
AT&T Operations & Service Management

Software Development Technology Evaluation:
Proving Fitness-for-Use with Architectural Styles

21st NASA SEL Software Engineering Workshop
December 4-5, 1996

Greenbelt, MD

James Cusick
AT&T

Bridgewater, NJ
James.Cusick@att.com

William M. Tepfenhart
AT&T

Middletown, NJ
William.Tepfenhart@att.com

Software Development Technology Evaluation:
Proving Fitness-for-Use with Architectural Styles

1. OVERVIEW
A cursory glance at a few trade journals will indicate that hundreds if not thousands of
development tools are available on the market. Today, with the boom in Internet technologies,
dozens of new tools enter the market place each month. Faced with this situation we were asked
to define how to choose the best tools for use in the development of hundreds of AT&T’s business
applications. Starting in early 1995 we began a revitalization of the software tool assessment
practices of AT&T and especially AT&T’s Network Services Division (NSD). These efforts are
discussed in this paper.

An evaluation methodology was developed based on the concept of fitness-for-use as measured
by the construction of architecturally representative applications within a laboratory environment.
This method was used to evaluate dozens of commercial software development tools in order to
select specific tools as corporate-wide standards.

This work presents the specifics of our software technology evaluation methodology, including our
research efforts, tool taxonomy, and evaluation procedures (especially our use of software
architecture-style-derived certifying test suites). This paper does not present the specific tools
selected through the application of this methodology.

2. SOFTWARE TECHNOLOGY EVALUATION
Many evaluation techniques are known and meet with varying levels of success. Weighted
averaging, benchmarking, figures of merit, etc., each have certain advantages and disadvantages
(Kontio, 1995). Our approach is instead centered on the concept of demonstrated fitness for use
in the environment of choice as measured by the applicability of any given tool to the dominant
software architectures found within the target business environment. This approach reflects the
“habitat models” suggested by Brown (1996).

This approach stems from viewing evaluation of software from the question: How well does the
provided functionality of a product span the needs associated with tasks to be performed using it?
Evaluation is highly dependent on the use for which the product is intended and the results are
subject to greater ambiguity than evaluations of other classes of products. Many manufacturers of
software products will be more than happy to provide metrics for common performance criteria.
Other questions are more subtle - does the tool provide the right abstractions, is it easy to use,
does it take one hour to do something or ten days. It is these subtle metrics that we intended our
evaluation environment to measure and for this we turned to Architecture Styles.

3. SOFTWARE ARCHITECTURE STYLES
A year long study of our software systems identified (at least) four basic architectural styles
present in our business applications (Belanger, et. al., 1996). These styles are: transaction, data
streaming, real time, and decision support. These styles consistently appeared, in part and in full,
in a wide variety of systems including those for Financial, Maintenance, Provisioning, and Asset
Management domains. We say, in part, because a majority of our systems are actually hybrids of
these different architectural styles.

We eventually derived several certification applications from these styles in order to drive our
evaluation process. Our core reasoning being that the development of small scale applications
modeled after our target development tasks would prove the suitability of the product under
evaluation. This turned out to be true for virtually all the products we evaluated. The entire process
of which the architecture styles play a key role is now presented in detail.

4. THE EVALUATION PROCESS
Our approach to evaluating software technology is to appraise technology as “fit-for-use” if we can
succeed in developing a sample application which has a reasonable similarity to our production
applications. In other words, we use the product under evaluation in an environment modeled
after the target development environment. The process can be summarized in the following
manner:

1. Survey the available products
2. Classify according to a technical framework
3. Filter the list using screening criteria
4. Construct evaluation criteria templates
5. Use the target tools to build an Architecturally Representative Application
6. Record findings against the templates
7. Judge the best scores and select the recommended product

4.1 Survey the available products
The overall evaluation process begins with surveying the tool market for candidate products and
classifying them according to a technical framework sometimes called a taxonomy. Consider the
survey effort first.

Initial research into software tool availability, capabilities, and trends, can be both rewarding and
daunting. The goal of tool research is to identify all or most of the tools currently available for the
support of a particular stage of the software development process. This research is technical in
that one must understand the technological capabilities of each tool. At the same time, this
research is market oriented in that one must also understand trends and supplier positioning.
Some of the techniques used in this activity include:

• Literature Reviews: Books, journals, trade press publications. Key information on
technical capabilities, product announcements, corporate changes, tool assessments
and recommendations are readily available.

• Trade Shows and Technical Conferences: We have found trade shows to be
decreasingly helpful in identifying technologies of interest. This is due to the generally
poor level of technical information available at such venues. Technical conferences
on the other hand remain helpful in putting the available products into a theoretical or
practical context.

• Direct Mail: Believe it or not this is an effective means for collecting information once
you are on enough mailing lists. (This may not be ecological but it is economical in
terms of time; it only takes a few seconds to sort incoming product information.)

• Automated Topic Searches: We receive weekly or monthly summaries extracted
from current publications on software technologies and trends via email.

• Web Browsing: This has become a significant source of information and freeware
tools. We maintain a list of vendor web sites and this has often provided up to the
minute information on particular products.

• Vendor Demonstrations: Slicing through the sales pitch to the technical meat is
often difficult but this remains an effective means of collecting detailed product
knowledge for selected tools.

• Evaluation Copies: A time or event determined interval of hands-on experience,
execution, and utilization of the tools is invaluable in understanding actual tool
capabilities (this is discussed in detail below).

• Professional Information Services: Several organizations are under contract to us
providing strategic information on the software industry. This information is often
helpful but can also be factually incorrect or misleading. These sources are useful
more as sounding boards than anything else.

• Private Contact Network: Having a wide network of software professionals to draw
upon for knowledge of the industry and technology cannot be overlooked in research
efforts. For example, teaching a continuing education course at a local university has
brought several new tools to our attention through conversations with students.

• Experience: Having been around the development community for a number of years
directly impacts your ability to scan and decipher information on tools. Oftentimes
“new” tools end up being familiar tools refaced.

• Project Reference: Having access to the real life trials of hundreds of development
projects we know early on what is needed, what works, and what provides less than
advertised.

The output of this research includes summary information on current product availability, industry
trends, software standards and standards activities, computing techniques and methods, and
development resources both internal and external. The specific products or technologies identified
during our research efforts are given an initial classification in the tool and technology taxonomy
discussed next.

4.2 Classify according to a technical framework
A Software Development Environment (SDE) can be viewed as an integrated set of tools and
processes enabling analysts, designers, programmers, and testers to collaborate on the
production of high quality software solutions. Traditional Software Engineering Environment (SEE)
frameworks support the concept of creating an SDE by creating a view of the computing
infrastructure as a unified and sensible environment with specified functional interrelationships
instead of just a random assortment of tools (Brown, 1992).

Unfortunately, SEEs are not well suited to the task of tool classification since they are operational
in nature. We required a classification scheme to build our SDE recommendations that could be
used to organize toolsets of an eclectic nature resulting from our market research. Existing tool
taxonomies (Kara, 1995; Fugetta, 1993; Sharon, 1993) typically focused on particular application
domains, limited platforms, or were designed to cover only CASE tools. Since these taxonomies
did not meet the needs of our scope (multi-platform, process driven tool standards), we derived
our own classification for software tools.

To begin with our classification scheme inherited some structure from our corporate context.
Domains typical of most software engineering environments sometimes fall outside of our mission
charter. For example, operating systems, databases, and communications protocols are defined
by other AT&T teams. Our mission was limited to a constrained view of Application Development
technologies.

We decided to base our tool classification on an existing software engineering framework (Utz,
1992) and then modify it as needed (see Figure 1). The major categories provided by Utz are re-
defined by us below. Each of these major categories are further detailed into sub-categories.
Representative sub-categories are shown in Table 1. As our market research efforts turn up tools,
we categorize them in the taxonomy. Currently we have approximately 1,000 tools in a database
organized by these categories. This database allows us to perform ad hoc queries on tool use
within AT&T and to quickly produce candidate lists when evaluation efforts are begun.

Figure 1: Software Engineering Environment Framework as Tool Taxonomy

4.2.1 The framework categories defined

• Process Management: Tools supporting the specification, implementation, and
compliance management of development processes.

• Management & Metrics: Tools supporting the planning, tracking, and measuring of
software development projects.

• Requirements Definition: Tools supporting the specification and enumeration of
requirements.

• Analysis & Design: Tools supporting high level design and modeling of software
system solutions following specific formal methodologies and often including code
generation and reverse engineering capabilities.

• Implementation (Code/Debug): These tools allow both low level code
implementation to support the edit-compile-debug cycle of development in 3GLs and
visual based programming targeted at rapid application development by use of screen
painters/generators with graphical pallets of reusable GUI components with 4GLs.

• V&V: Tools providing software verification and validation, quality assurance, and
quantification of reliability. These include test case management, test selection, and
automated test support.

• Release & Support: Tools targeted at supporting enhancements and corrections to
existing code as well as browsers, source code analyzers and software distribution.

• Content Creation: Tools used for developing Internet materials such as electronically
published documents, graphics and multimedia components of Internet sites.

• Documentation: Tools supporting creation and distribution of system documentation,
specifications, and user information. These tools include documentation storage,
retrieval, and distribution.

• Software Configuration & Manufacturing: A broad class of tools related to the
control of software components and development artifacts including documentation
for the purpose of team based programming, versioning, defect tracking, and
software manufacturing and distribution.

Process Connection

Project Planning & Metrics

Documentation

Software Configuration Management

Requirements
Definition

Analysis &
Design

Implementation V & V
Release &

Support

Content Creation

Process
Process Definition & Compliance

Project Planning & Metrics
Project Planning
Function Points
General Metrics

Requirements & Definition
Requirements Trace

Analysis & Design
Object Oriented Analysis & Design
Structured or Other Design Methods
RDBMS Modeling

Implementation
Languages
Editors
Compilers & Debuggers
IDEs
GUI/Visual Development
Cross Platform Development
Database Development
Components

Verification & Validation
Test Management & Design
Record & Playback
Stress, Load & Performance
Coverage

Release & Support
Distribution
Reverse Engineering
Emulation
Utilities

Content Creation
Web Document Authoring
Graphics Authoring
Multimedia Authoring

Documentation & Workflow
System Documentation
Help Authoring
Workflow

Software Configuration Management
Source Code Control
Defect Tracking
Configuration or Manufacturing
Integrated SCM

Table 1: Selected Tool Taxonomy Sub-Categories

4.3 Filter the list using screening criteria
With a thousand tools in the taxonomy we have to start trimming the list whenever a particular
technology sub-category must be evaluated. Using basic technical requirements many candidate
tools can be eliminated. Platform support, negative reviews in the trade press, vendor instability or
financial losses by a vendor can all be used to quickly eliminate certain products from the
evaluation list. If negative criteria do not work we use positive criteria: is the tool “Editor’s Choice”
or does our development community already use it as a de facto standard? These types of tools
need to be on the evaluation list while others should be dropped.

4.4 Construct evaluation criteria templates
Each of the tool categories in the taxonomy needs specific evaluation criteria to measure the
relevant attributes of each tool type in our taxonomy. Towards that end a set of templates must be
developed for each type of technology evaluated. These templates resemble the ones found in
many trade journals and bench-marking reports. The following must be created or reused:

1. First, one overall template for generic tool and vendor measurement is provided. This
generic template covers such items as documentation, support, pricing, and platform
availability. A standard set of issues regarding tools such as iconic design, menu
features, ergonomics, printing, and so on, is included.

2. Each analyst must then define a specific template which covers the technical aspects
of the particular class of tool under investigation, if it does not already exist in our
repository of templates. This must be created for each category.

4.5 Use target tools to build Architecturally Representative Applications
Recall that we are interested in demonstrating “fitness-for-use”. To do this we now build a
representative application with the product(s) selected for evaluated from the taxonomy. Before
evaluating any software technology we must first consider what capabilities it has and how to
construct a suitable test suite or if our current set of application specifications will need expansion.

4.5.1 Technologies and Their Tasks
Each type of software product dictates certain kinds of tasks that will be the subject of evaluation.
For example, word processors might be evaluated in terms of developing on-line (in program)
documentation, help files, man pages, hard copy user manuals, and HTML documents. On the
other hand, one would not evaluate a compiler in terms of its support of those same tasks. In
some cases, products span more than one functional category. For example a C++ IDE might
provide a visual programming environment, a class system, and a general purpose compiler.
Since each of these is a separate endeavor, an evaluation of a C++ IDE will concentrate,
independently, on the visual programming environment, class system completeness, and compiler
performance. These are individual and discrete evaluations. Each will need specific resources to
carry out the evaluation.

4.5.2 Software Resources for Evaluation
The software resources required to complete the data collection demanded by the evaluation
template fall into three categories: 1) the software under evaluation; 2) supporting software (i.e.,
the operating system); and 3) software in the form of test cases (e.g., a sample design to
implement). As we have shown, common architectures run through most AT&T applications. Our
concept was to derive the required test cases from these architecture types or patterns.

Software patterns (Gamma, 1995; Coplien, 1995) formalize some of the concepts on recurring
underlying software construction themes. We devised evaluation test cases to demonstrate that
any tool recommended supported AT&T’s specific computing problem domains. Thus we
developed and specified a set of representative applications modeled after architectural styles or
patterns observed in the field, to serve as certifying test suites for any tool slated for review (see
Table 2).

ARCH STYLE GUI STYLE
Arch/UI Style
 vs.
Sample Apps

OLTP Data
Stream

Decision
Support

WWW Forms Active
Graphic

Alert
Panel

Map
Based

Hypertext
Browser

Contact X X X
COD X X
GEM X X
NetAnalyst X X X
ToolBase X X X X X

Table 2: Representative Applications and their Architecture Styles

The representative applications and their relationship to the generic architecture styles of Table 2
are briefly described below:

• Contact Data Base: The Contact Data Base is a very simple system for managing contacts
on a project-by-project basis. Contacts are managed at the level of tracking individuals
associated with a project, individual meetings, and tracking tools employed on the project.
This application demonstrates a forms based interface for data entry and reporting.

• Co-Operative Document System (CODS): The Co-Operative Document System allows
multiple people to work on the same document. The basic capability of checking a document
into and out of a document control system is augmented with a message broadcasting feature
alerting users of a subscribed document’s state. This represents a client server system with
data streaming and on-line transaction architectural components.

• Graphic Enterprise Modeler (GEM): The graphic organization display provides the ability to
model graphically the structure of a corporate organization. It visually illustrates relationships
among people, projects, and teams. To find answers to specific questions regarding an
organization, the user follows semantically meaningful links and uses active graphics controls.
This application demonstrates the user interaction style of the active graphics variety.

• NetAnalyst: This application is a map based data visualization tool. It takes a set of real
telecommunications data (the 1994 L.A. earthquake phone traffic) and plots it geographically.
This is a common type of application profiling decision support and mapping.

• ToolBase: This is an Intranet based front end to a product tracking database. This application
provides for the evaluation of many types of Internet technologies and the extent to which they
can support the architectural styles of OLTP and decision support on the Intranet.

Returning to our evaluation process, an appropriate application is selected to test the tool class
and development against a set of specifications describing the sample application is begun.
Often, the specifications need modification or additional software design efforts need to be
conducted to fully stress the products under evaluation (e.g., our Internet application did not test
multimedia features as initially designed). Inferior products fail during implementation of the
specifications and quickly drop out.

4.6 Record findings against the templates
Throughout the work of building the sample application, feature performance data must be
captured on the custom template constructed for this technical category. This includes objective
and subjective measures. Subjective data includes how intuitive the product was or how friendly
the help desk was when called. Objective data includes if the promised features worked and if you
could accomplish the task of building the sample application.

Weighted Scoring Method (WSM) is normally used to provide a simple rating mechanism for
each product under evaluation. In this method each item in the criteria matrix is assigned a score
or weight score. Usually a score of 1 to 5 is given to the product for each criterion. Then an overall
score can be derived using the formula below (Konito, 1996):

Scorea = ∑ (weightj * scoreaj)
n

j=1

4.7 Judge the best scores and select the recommended product
The final step is recommending a product. Out of the short list all products are evaluated. Using
the sample application as a test suite the superior product normally emerges. With a WSM
technique there is very small opportunity for any ties. The analyst must, however, still exercise
their best judgment in selecting a product for recommendation.

5. EVALUATION PROCESS RESULTS
Within a laboratory environment we developed these representative applications repeatedly using
different software technologies. We also carried out other tasks in support of this simulated
development work, such as configuration management, using still more products under

evaluation. This approach provided clear evidence of the suitability of one product over another
and was much easier to derive than by only looking at a feature capability matrix. We had a high
degree of confidence that the product would work on a real development project using this
method.

Dozens of tools have been evaluated using this method and still others are currently under
examination. From this work many standard products have been chosen that are now part of
AT&T’s overall body of internal technical standards. Through controlled introduction using pilot
projects and consultative jump-starts many of these products have also proven to be successful
on large-scale software projects. Recently this technique was also used successfully to evaluate
over 30 software products used in Internet based development projects.

6. PORTING THE PROCESS
Deployment of this technique to a different environment requires minimal modifications. We have
reused this process from the evaluation of Windows based tools to the evaluation of Internet
based tools seamlessly. To transfer this process to a different development base or user
community we recommend making the following changes:

1. The tool taxonomy must be recalibrated to fit your environment and goals. Our
taxonomy does not address databases, office automation, or operating systems. You
need to add the appropriate technologies to fit you computing framework.

2. Your architectural styles may vary from ours. We develop very few “hard” realtime
systems or embedded systems of any kind since our spin-off of Lucent Technologies.
There may be other significant architectural styles you will need to identify.

3. After adjusting the framework and architectural styles you now need to document your
screening criteria and create your detailed evaluation criteria templates. A good
template typically requires a couple of days for an analyst to create. They are
reusable and typically only one is necessary per technical category.

4. Execute. This is the crucial step where the watch-word is “emulation”. That is,
emulation of your actual development process and tasks.

We are confident that by following these simple steps the process we have been using for the last
two years can be re-deployed in any software development technology evaluation laboratory.

7. CONCLUSIONS
Using applications derived from clearly relevant architectures keeps the evaluation process
honest. Analysts with development backgrounds typically feel more comfortable building an
application than acting as a software critic. Simulating the development tasks in this way does not
solve all the problems with technology evaluation. Politics and compromise are inescapable
factors when making decisions that will commit a corporation to spending or not spending large
sums with any given vendor. Also, some variability remains in the scoring technique. Each analyst
tends to have peculiar habits in working through a 200 item feature matrix. One may score “high”
or “low” while another may include “medium”. Nevertheless, we feel confident that architecture
styles add a healthy modicum of extra validity to the otherwise typical process we have described.

8. ACKNOWLEDGEMENTS
Naturally work of this type cannot be accomplished without the cooperation and support of dozens of people. We are
indebted to several senior managers for their enthusiastic top-down support of this work including Judy Page and Dick
Machol of NSD, and Rod Mack and Illene Hochman of BMD. Our immediate support managers, Barbara Beech and
Moses Ling, were especially helpful in guiding this effort. Finally, we would like to thank the dozens of people who
provided information, feedback, and carried out the evaluations across AT&T and NSD. In particular we appreciate the
work of the NSD Software Development Environment Team and the AT&T Foundation Architecture Software
Development Tools Team. This paper reports on the combined work of each of the individual team members.

9. REFERENCES
1. Belanger, D., et. al., “Architecture Styles and Services: An Experiment on SOP-P”, AT&T Technical Journal,

Jan/Feb, 1996, pp54-63.

2. Brown, et. al., Software Engineering Environments: Automated Support for Software Engineering, McGraw-

Hill, 1992.

3. Brown, et. al., “A Framework for Evaluating Software Technology”, IEEE Software, September 1996, pp39-49.

4. Coplien, J., & Schmidt, D., eds., Pattern Languages of Program Design, Addison-Wesley, 1995.

5. Fuggetta, A., “A Classification of CASE Technology”, Computer, Dec. 1993.

6. Gamma, et al, Design Patterns: Elements of Reusable Design, Addison-Wesley, 1995.

7. Kara, D., "Client/Server Development Toolsets: A Framework for Evaluation and Understanding", Application

Development Expo, New York, NY, April 4, 1995.

8. Konti, J. and Tesoriero, R, “A COTS Selection Method and Experiences in its Use”, Proceedings of 20th NASA

Software Engineering Workshop, Greenbelt, MD, November, 1995.

9. Konti, J., “A Case Study in Applying a Systematic Method for COTS Selection”, Proceedings of 18th International

Conference on Software Engineering, Berlin, Germany, March 25-26, 1996.

10. Sharon, D., “A Reverse and Re-Engineering Tool Classification Scheme”, IEEE Software Eng. Tech. Committee

Newsletter, Jan. 1993.

11. Utz, W., Software Technology Transitions: Making the Transition to Software Engineering, Prentice Hall,

Englewood Cliffs, NJ, 1992.

